The performance of modularity maximization in practical contexts

نویسندگان

  • Benjamin H. Good
  • Yves-Alexandre de Montjoye
  • Aaron Clauset
چکیده

Although widely used in practice, the behavior and accuracy of the popular module identification technique called modularity maximization is not well understood in practical contexts. Here, we present a broad characterization of its performance in such situations. First, we revisit and clarify the resolution limit phenomenon for modularity maximization. Second, we show that the modularity function Q exhibits extreme degeneracies: it typically admits an exponential number of distinct highscoring solutions and typically lacks a clear global maximum. Third, we derive the limiting behavior of the maximum modularity Qmax for one model of infinitely modular networks, showing that it depends strongly both on the size of the network and on the number of modules it contains. Finally, using three real-world metabolic networks as examples, we show that the degenerate solutions can fundamentally disagree on many, but not all, partition properties such as the composition of the largest modules and the distribution of module sizes. These results imply that the output of any modularity maximization procedure should be interpreted cautiously in scientific contexts. They also explain why many heuristics are often successful at finding high-scoring partitions in practice and why different heuristics can disagree on the modular structure of the same network. We conclude by discussing avenues for mitigating some of these behaviors, such as combining information from many degenerate solutions or using generative models.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Performance of modularity maximization in practical contexts.

Although widely used in practice, the behavior and accuracy of the popular module identification technique called modularity maximization is not well understood in practical contexts. Here, we present a broad characterization of its performance in such situations. First, we revisit and clarify the resolution limit phenomenon for modularity maximization. Second, we show that the modularity funct...

متن کامل

Mining Overlapping Communities in Real-world Networks Based on Extended Modularity Gain

Detecting communities plays a vital role in studying group level patterns of a social network and it can be helpful in developing several recommendation systems such as movie recommendation, book recommendation, friend recommendation and so on. Most of the community detection algorithms can detect disjoint communities only, but in the real time scenario, a node can be a member of more than one ...

متن کامل

Walk-modularity and community structure in networks

Modularity maximization has been one of the most widely used approaches in the last decade for discovering community structure in networks of practical interest in biology, computing, social science, statistical mechanics, and more. Modularity is a quality function that measures the difference between the number of edges found within clusters minus the number of edges one would statistically ex...

متن کامل

Weapon scheduling in naval combat systems for maximization of defense capabilities

Air defense is a crucial area for all naval combat systems. In this study, we consider a warship equipped with an air-defense weapon that targets incoming threats using surface-to-air missiles. We define the weapon scheduling problem as the optimal scheduling of a set of surface-to-air missiles of a warship to a set of attacking air threats. The optimal scheduling of the weapon results in an in...

متن کامل

Modularity and Spectral Co-Clustering for Categorical Data

To tackle the co-clustering problem on categorical data, we consider a spectral approach. We first define a generalized modularity measure for the co-clustering task. Then, we reformulate its maximization as a trace maximization problem. Finally we develop a spectral based co-clustering algorithm performing this maximization. The proposed algorithm is then capable to cluster rows and colunms si...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009